Google Cloud Certified Professional Machine Learning Engineer

(GCPMLE.AE1) / ISBN : 978-1-64459-591-6
Lessons
Lab
TestPrep
AI Tutor (Hinzufügen Auf)
Holen Sie sich eine kostenlose Testversion

Über diesen Kurs

Der Kurs „Google Cloud Professional Machine Learning Engineer“ vermittelt Ihnen die Fähigkeiten, komplexe Modelle für maschinelles Lernen in Google Cloud zu entwerfen, zu erstellen und bereitzustellen. Sie vertiefen sich in wichtige Themen wie die Formulierung von ML-Problemen, die Architektur skalierbarer ML-Lösungen, die Entwicklung und Optimierung von Modellen, die Automatisierung durchgängiger ML-Pipelines und die Überwachung der Modellleistung. Dieser Kurs ist ideal für erfahrene Google Cloud-Benutzer, die ihre Fähigkeiten im maschinellen Lernen auf die nächste Stufe bringen möchten.

Fähigkeiten, die Sie erwerben werden

Die Zertifizierung „Google Cloud Professional Machine Learning Engineer“ (PMLE) soll die Fachkompetenz von Fachleuten beim Entwerfen, Erstellen und Bereitstellen von Modellen für maschinelles Lernen in der Google Cloud bestätigen. Diese Zertifizierung weist die Fähigkeit eines Kandidaten nach, Google Cloud-Technologien zu nutzen, um Geschäftsprobleme mithilfe von maschinellem Lernen zu lösen.

1

Introduction

  • Google Cloud Professional Machine Learning Engineer Certification
  • Who Should Buy This Course
  • How This Course Is Organized
  • Conventions Used in This Course
  • Google Cloud Professional ML Engineer Objective Map
2

Framing ML Problems

  • Translating Business Use Cases
  • Machine Learning Approaches
  • ML Success Metrics
  • Responsible AI Practices
  • Summary
  • Exam Essentials
3

Exploring Data and Building Data Pipelines

  • Visualization
  • Statistics Fundamentals
  • Data Quality and Reliability
  • Establishing Data Constraints
  • Running TFDV on Google Cloud Platform
  • Organizing and Optimizing Training Datasets
  • Handling Missing Data
  • Data Leakage
  • Summary
  • Exam Essentials
4

Feature Engineering

  • Consistent Data Preprocessing
  • Encoding Structured Data Types
  • Class Imbalance
  • Feature Crosses
  • TensorFlow Transform
  • GCP Data and ETL Tools
  • Summary
  • Exam Essentials
5

Choosing the Right ML Infrastructure

  • Pretrained vs. AutoML vs. Custom Models
  • Pretrained Models
  • AutoML
  • Custom Training
  • Provisioning for Predictions
  • Summary
  • Exam Essentials
6

Architecting ML Solutions

  • Designing Reliable, Scalable, and Highly Available ML Solutions
  • Choosing an Appropriate ML Service
  • Data Collection and Data Management
  • Automation and Orchestration
  • Serving
  • Summary
  • Exam Essentials
7

Building Secure ML Pipelines

  • Building Secure ML Systems
  • Identity and Access Management
  • Privacy Implications of Data Usage and Collection
  • Summary
  • Exam Essentials
8

Model Building

  • Choice of Framework and Model Parallelism
  • Modeling Techniques
  • Transfer Learning
  • Semi‐supervised Learning
  • Data Augmentation
  • Model Generalization and Strategies to Handle Overfitting and Underfitting
  • Summary
  • Exam Essentials
9

Model Training and Hyperparameter Tuning

  • Ingestion of Various File Types into Training
  • Developing Models in Vertex AI Workbench by Using Common Frameworks
  • Training a Model as a Job in Different Environments
  • Hyperparameter Tuning
  • Tracking Metrics During Training
  • Retraining/Redeployment Evaluation
  • Unit Testing for Model Training and Serving
  • Summary
  • Exam Essentials
10

Model Explainability on Vertex AI

  • Model Explainability on Vertex AI
  • Summary
  • Exam Essentials
11

Scaling Models in Production

  • Scaling Prediction Service
  • Serving (Online, Batch, and Caching)
  • Google Cloud Serving Options
  • Hosting Third‐Party Pipelines (MLflow) on Google Cloud
  • Testing for Target Performance
  • Configuring Triggers and Pipeline Schedules
  • Summary
  • Exam Essentials
12

Designing ML Training Pipelines

  • Orchestration Frameworks
  • Identification of Components, Parameters, Triggers, and Compute Needs
  • System Design with Kubeflow/TFX
  • Hybrid or Multicloud Strategies
  • Summary
  • Exam Essentials
13

Model Monitoring, Tracking, and Auditing Metadata

  • Model Monitoring
  • Model Monitoring on Vertex AI
  • Logging Strategy
  • Model and Dataset Lineage
  • Vertex AI Experiments
  • Vertex AI Debugging
  • Summary
  • Exam Essentials
14

Maintaining ML Solutions

  • MLOps Maturity
  • Retraining and Versioning Models
  • Feature Store
  • Vertex AI Permissions Model
  • Common Training and Serving Errors
  • Summary
  • Exam Essentials
15

BigQuery ML

  • BigQuery – Data Access
  • BigQuery ML Algorithms
  • Explainability in BigQuery ML
  • BigQuery ML vs. Vertex AI Tables
  • Interoperability with Vertex AI
  • BigQuery Design Patterns
  • Summary
  • Exam Essentials

1

Exploring Data and Building Data Pipelines

  • Splitting Data
  • Transforming Categorical Data into Numerical Data
2

Feature Engineering

  • Performing EDA
  • Using Tensorflow Transform
3

Choosing the Right ML Infrastructure

  • Using Natural Language AI
4

Architecting ML Solutions

  • Storing Data in BigQuery
5

Building Secure ML Pipelines

  • Creating a Workbench Instance
6

Model Building

  • Building a DNN
  • Building an ANN Model
7

Maintaining ML Solutions

  • Using TensorFlow Data Validation (TFDV)
8

BigQuery ML

  • Creating a Model in BigQuery

Haben Sie Fragen? Schauen Sie sich die FAQs an

Sie haben noch unbeantwortete Fragen und möchten Kontakt aufnehmen?

Kontaktiere uns jetzt

200 USD (zzgl. Steuern, sofern zutreffend)

Google

Multiple-Choice- und Multiple-Select-Fragen

Die Prüfung umfasst 50–60 Fragen.

120 Minuten

Hier sind die Richtlinien für die Wiederholung:

  • Cloud Digital Leader: Sie haben innerhalb eines Jahres maximal zehn Versuche und müssen zwischen jedem Fehlversuch mindestens 14 Tage warten.
  • Associate- und Professional-Zertifizierungsprüfungen: Sie haben in zwei Jahren maximal vier Versuche. Wenn Sie die Prüfung nicht bestehen, können Sie sie nach 14 Tagen wiederholen. Wenn Sie die Prüfung beim zweiten Mal nicht bestehen, müssen Sie 60 Tage warten, bevor Sie die Prüfung ein drittes Mal ablegen können. Wenn Sie die Prüfung beim dritten Mal nicht bestehen, müssen Sie 365 Tage warten, bevor Sie die Prüfung ein viertes Mal ablegen können.

Google Cloud Certified Professional Machine Learning Engineer

$ 279.99

Kaufe jetzt

Ähnliche Kurse

Alle Kurse
Scrolle nach oben