Fundamentals of Machine Learning

(CTU-AI210.AP1)
Lessons
Lab
TestPrep
AI Tutor (Hinzufügen Auf)
Instructor-Led (Hinzufügen Auf)
Holen Sie sich eine kostenlose Testversion

Fähigkeiten, die Sie erwerben werden

Holen Sie sich die Unterstützung, die Sie brauchen. Melden Sie sich für unseren Kurs mit Lehrer an.

1

Foundations of Machine Learning

  • Welcome
  • Scope, Terminology, Prediction, and Data
  • Putting the Machine in Machine Learning
  • Examples of Learning Systems
  • Evaluating Learning Systems
  • A Process for Building Learning Systems
  • Assumptions and Reality of Learning
  • About Our Setup
  • The Need for Mathematical Language
  • Our Software for Tackling Machine Learning
  • Probability
  • Linear Combinations, Weighted Sums, and Dot Products
  • A Geometric View: Points in Space
  • Notation and the Plus-One Trick
  • Getting Groovy, Breaking the Straight-Jacket, and Nonlinearity
  • NumPy versus “All the Maths”
  • Floating-Point Issues
2

Comparing Machine Learning Algorithms

  • Classification Tasks
  • A Simple Classification Dataset
  • Training and Testing: Don’t Teach to the Test
  • Evaluation: Grading the Exam
  • Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions
  • Simple Classifier #2: Naive Bayes, Probability, and Broken Promises
  • Simplistic Evaluation of Classifiers
  • A Simple Regression Dataset
  • Nearest-Neighbors Regression and Summary Statistics
  • Linear Regression and Errors
  • Optimization: Picking the Best Answer
  • Simple Evaluation and Comparison of Regressors
  • Revisiting Classification
  • Decision Trees
  • Support Vector Classifiers
  • Logistic Regression
  • Discriminant Analysis
  • Assumptions, Biases, and Classifiers
  • Comparison of Classifiers: Take Three
  • Linear Regression in the Penalty Box: Regularization
  • Support Vector Regression
  • Piecewise Constant Regression
  • Regression Trees
  • Comparison of Regressors: Take Three
  • Ensembles
  • Voting Ensembles
  • Bagging and Random Forests
  • Boosting
  • Comparing the Tree-Ensemble Methods
3

Building Machine Learning Models

  • Feature Engineering Terminology and Motivation
  • Feature Selection and Data Reduction: Taking out the Trash
  • Feature Scaling
  • Discretization
  • Categorical Coding
  • Relationships and Interactions
  • Target Manipulations
  • Models, Parameters, Hyperparameters
  • Tuning Hyperparameters
  • Down the Recursive Rabbit Hole: Nested Cross-Validation
  • Pipelines
  • Pipelines and Tuning Together
  • Feature Selection
  • Feature Construction with Kernels
  • Principal Components Analysis: An Unsupervised Technique
4

Evaluating Model Performance

  • Evaluation and Why Less Is More
  • Terminology for Learning Phases
  • Major Tom, There’s Something Wrong: Overfitting and Underfitting
  • From Errors to Costs
  • (Re)Sampling: Making More from Less
  • Break-It-Down: Deconstructing Error into Bias and Variance
  • Graphical Evaluation and Comparison
  • Comparing Learners with Cross-Validation
  • Baseline Classifiers
  • Beyond Accuracy: Metrics for Classification
  • ROC Curves
  • Another Take on Multiclass: One-versus-One
  • Precision-Recall Curves
  • Cumulative Response and Lift Curves
  • More Sophisticated Evaluation of Classifiers: Take Two
  • Baseline Regressors
  • Additional Measures for Regression
  • Residual Plots
  • A First Look at Standardization
  • Evaluating Regressors in a More Sophisticated Way: Take Two
5

Integrated Applications and Capstone

  • Working with Text
  • Clustering
  • Working with Images
  • Optimization
  • Linear Regression from Raw Materials
  • Building Logistic Regression from Raw Materials
  • SVM from Raw Materials
  • Neural Networks
  • Probabilistic Graphical Models

1

Foundations of Machine Learning

  • Plotting a Probability Distribution Graph
  • Using the zip Function
  • Calculating the Sum of Squares
  • Plotting a Line Graph
  • Plotting a 3D Graph
  • Plotting a Polynomial Graph
  • Using the numpy.dot() Method
2

Comparing Machine Learning Algorithms

  • Displaying Histograms
  • Defining an Outlier
  • Calculating the Median Value
  • Estimating the Multiple Regression Equation
  • Evaluating a Logistic Model
  • Creating a Covariance Matrix
  • Using the load_digits() Function
  • Illustrating a Less Consistent Relationship
  • Illustrating a Piecewise Constant Regression
  • Calculating the Mean Value
3

Building Machine Learning Models

  • Manipulating the Target
  • Manipulating the Input Space
  • Displaying a Correlation Matrix
  • Creating a Nonlinear Model
  • Performing a Principal Component Analysis
  • Using the Manifold Method
4

Evaluating Model Performance

  • Constructing a Swarm Plot
  • Using the describe() Method
  • Viewing Variance
  • Creating a Confusion Matrix
  • Creating an ROC Curve
  • Recreating an ROC Curve
  • Creating a Trendline Graph
  • Viewing the Standard Deviation
  • Constructing a Scatterplot
  • Evaluating the Prediction Error Rates
5

Integrated Applications and Capstone

  • Encoding Text
  • Building an Estimated Simple Linear Regression Equation

Fundamentals of Machine Learning

$279.99

Kaufe jetzt

Ähnliche Kurse

Alle Kurse
Scrolle nach oben